Effects of Salt Stress on Different Maize Genotypes

نویسندگان

  • André Dias de Azevedo Neto
  • José Tarquinio Prisco
  • Joaquim Enéas-Filho
  • Claudivan Feitosa de Lacerda
  • José Vieira Silva
  • Paulo Henrique Alves da Costa
  • Enéas Gomes-Filho
چکیده

Seeds from eight different maize genotypes (BR3123, BR5004, BR5011, BR5026, BR5033, CMS50, D766 and ICI8447) were sown in vermiculite, and after germination they were transplanted into nutrient solution or nutrient solution containing 100 mmol.L-1 of NaCl and placed in a greenhouse. During the experimental period plant growth (dry matter, shoot to root dry mass ratio, leaf area, relative growth rate, and net assimilation rate), leaf temperature, stomatal conductance, transpiration, predawn water potential, sodium, potassium, soluble amino acids and soluble carbohydrate contents were determined in both control and salt stressed plants of all genotypes studied. Salt stress reduced plant growth of all genotypes but the genotypes BR5033 and BR5011 were characterized as the most salt-tolerant and salt-sensitive, respectively. Stomatal response of the salt-tolerant genotype was not affected by salinity. Among the studied parameters, shoot to root dry mass ratio, leaf sodium content and leaf soluble organic solute content showed no relation with salt tolerance, i.e., they could not be considered as good morpho-physiological markers for maize salt tolerance. In contrast, sodium and soluble organic solutes accumulation in the roots as a result of salt stress appeared to play an important role in the acclimation to salt stress of the maize genotypes studied, suggesting that they could be used as physiological markers during the screening for salt tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

بررسی تحمل به تنش شوری در چهار هیبرید ذرت (Zea mays L.) در مرحله گیاهچه ای

     Salinity stress is one of the most important abiotic stresses that effects on many agronomic, nutritional, physiological and biochemical processes of crops. A factorial experiment based on completely randomize design with four replications under laboratory conditions with four maize hybrids (SC640, SC704, SC740 and SC Simon) and three levels of salt stress (0, 100 and 200 mM NaCl) was carr...

متن کامل

Salicylic Acid Induced Salinity Tolerance in Maize (zea Mays)

Salicylic acid (SA) a naturally occurring plant hormone is an essential signal molecule recognized to have diverse effects on biotic and abiotic stress tolerance. The present study was planned to investigate the role of SA in salt tolerance of maize. Experiment was conducted to study the SA induce physiological and biochemical changes in two genotypes of maize viz., Sahiwal-2002 and EV-20 in th...

متن کامل

Degree of salt tolerance in some newly developed maize (Zea mays L.) varieties. Maria Zahoor*, Rehana Khaliq, Zafar Ullah Zafar and Habib-ur-Rehman Athar

Salinity is a major abiotic-stress worldwide which decreases crop growth productivity. The objective of the present study was to investigate whether salt stress has adverse effects on growth, photosynthetic efficiency, biochemical properties and nutrient status of maize. An experiment was carried out with seeds of four varieties of maize which were allowed to germinate for one week. Afterwards,...

متن کامل

Banding Patterns Activity of Antioxidant Enzymes and Physiological Indices in the Maize (Zea mays L.) Genotypes under Water Deficit Stress

Extended Abstract Introduction and Objective: Various environmental stresses, especially water deficit stress have several and major effects on maize growth and production. Drought is one of the abiotic stresses that due to the great variety of rainfall conditions, it is known from Iran as the most important factor limiting the growth and production of crops. Therefore, the effect of water def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004